The result of computing the values of the temperature at the points $M_i(s)$ of the i-th ray with coordinates $r_i(s) = d_i + 0.1s$, $s = 1, 2, ..., \theta_i = ih$ is presented in Table 1.

The data in Table 1 yield a representation of the temperature distribution in the internal points of the plate area. They are obtained upon partitioning the interval $(0, \pi/4)$ into eight parts (i = 0, 1, ..., 8) with a division spacing of $\tilde{h} = \pi/32$.

NOTATION

L₁, L₂, plate contours; r, Θ , dimensionless polar coordinates, r_{ν} , ε_{ν} , m_{ν} , a_{ν} , $\nu = 1, 2$, contour parameters; h(r, Θ), plate thickness; H, P, given functions; T_{ν} , $\nu = 1, 2$, value of the temperature on the L₀ contour; T, function of the temperature; λ , heat-conduction coefficient: τ , Kirchhoff variable; Φ , Ψ , known functions; α , parameter playing the part of the eigennumber; $\tilde{\Theta}$, period of the solution of the problem; n, number parts into which the interval is divided; h, division spacing; Θ_i , point of division; Y_i, an approximate value of the function y(Θ) at the division point; μ , parameter; $F(\Theta_i)$ known function; μ_k , roots of the characteristic equation; $f_i(k)$, $\varphi_1(k)$, $\varphi_2(k)$, functions of the radius r; $C_i(k)$, $D_i(k)$, constants of integration; τ_i , a function of the problem; M_i(s), a point of the i-th ray; and $r_i(s)$, Θ_i , coordinates of a point on the i-th ray.

LITERATURE CITED

- A. I. Uzdalev and E. N. Bryukhanova, Solution of the Heat-Conduction Equations for a Plate with Inhomogeneous Thermophysical Properties [in Russian], Deposited in VINITI, March 14, 1985, No. 1710, Saratov (1985).
- L. A. Kozdoba, Methods of Solving Nonlinear Heat Conduction Problems [in Russian], Moscow (1975).
- 3. V. L. Bazhanov, I. I. Gol'denblat, N. A. Nikolaenko, and A. M. Sinyukov, Thermal Effect Analysis of Structures [in Russian], Moscow (1969).

APPROXIMATE ANALYTICAL SOLUTION OF LINEAR HEAT-CONDUCTION PROBLEMS

IN REGIONS WITH NONCANONICAL BOUNDARIES

I. V. Baryshnikov and V. A. Datskovskii

UDC 536.24.02

We present a method for solving linear heat-conduction problems in regions bounded by a noncanonical contour. The method is based on extending the noncanonical contour to a contour imbedded in the grid of classical coordinate systems.

The use of various modifications of the method of partial regions (see, for example, [1]) broadens the possibility of analytically solving heat-conduction problems. The main ingredient in the application of these methods is the requirement of a canonical contour bounding the computational region (it must be formed by the intersection of orthogonal coordinate surfaces of classical coordinate systems [2]).

In the present paper we offer an approximate analytical solution of linear heat-conduction problems in regions bounded by a noncanonical contour.

In connection with fields described by the Laplace equation, our method for the solution of a problem can be represented as follows: 1) a contour of complex profile bounding the computational region is extended to a contour of canonical form; 2) on the extended part of the contour a boundary condition of the second kind

$$\lambda \left. \frac{\partial T}{\partial n} \right|_{s} = q(s)$$

is introduced, where q(s) is an unknown thermal flow distribution function on the "extended" boundary s; 3) the function q(s) may be replaced by a piecewise-constant representation q_i , $i=1,2,\ldots,M$; 4) a solution of a field problem constructed by one of the analytical

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 4, pp. 659-662, October, 1987. Original article submitted January 8, 1986.

Fig. 1. Shape of the computational region: line 1 is a boundary of the initial region; line 2 is an "added-on" canonical boundary; α , b, c, and d are node coordinates of corresponding regions.

methods described in [2, 3] over the whole "expanded" region will be a parametric function of the unknown thermal flows q_i ; 5) a set q_i is sought which will satisfy the boundary conditions of the initial problem at the M nodes of a collocation [4] located on the initial (noncanonical) countour. We consider a specific example. Assume that we need to solve the Laplace equation in the region outlined by the continuous curve in Fig. 1:

$$\nabla^2 T = 0$$

and that we need to satisfy the set of boundary conditions

$$T|_{y=b+\frac{c-b}{a}x,x\in(0,a)} = U(x),$$
(2)

$$\frac{\partial T}{\partial x}\Big|_{x=0, y\in(0,b)} = 0,$$
(3)

$$\frac{\partial T}{\partial x}\Big|_{x=a, y\in\{0,c\}} = 0, \tag{4}$$

$$T|_{y=0, x\in(0,a)} = 0.$$
⁽⁵⁾

We proceed to solve an auxiliary problem in which we add on a contour, bounding the computational region, of canonical form (the dashed line in Fig. 1). On the extended part of the contour (boundary y = d) we introduce the boundary condition

$$\left.\lambda \left. \frac{\partial T}{\partial y} \right|_{s} = q(x)$$

on the boundary x = 0, $y \in (0, d)$ we have condition (3), and on the boundary x = a, $y \in (0, d)$ we have condition (4). On the boundary y = 0, $x \in (0, a)$ condition (5) stays unchanged.

We replace the function q(x) by the piecewise-smooth representation $q(x) = q_1$, $x \in ((i - 1)a/M$, ic/M), i = 1, 2, ..., M. The solution of the auxiliary problem, obtained by the method of separation of variables [3], has the form

$$T(x, y, q_i, i = 1, 2, ..., M) = \sum_{k=1}^{\infty} A_k \operatorname{sh}(\omega_k y) \cos(\omega_k x) + A_0 y,$$
(6)

where

$$A_{k} = \frac{4\sin\left(\frac{a}{2M}\omega_{k}\right)}{a\omega_{k}\lambda \operatorname{ch}(\omega_{k}d)} \sum_{i=1}^{M} q_{i}\cos\left(\frac{a}{2M}\left(2i-1\right)\omega_{k}\right),$$
$$A_{0} = \frac{1}{M\lambda}\sum_{i=1}^{M} q_{i}, \quad \omega_{k} = \frac{k\pi}{a}.$$

After this, we reduce the problem to that of finding the set of values q_i which provide the temperatures $U(x_i)$, $i = 1, 2, \ldots, M$, at collocation points distributed along the boundary of the initial contour $y_i = b + (c - b)x_i/a$, $x_i \in (0, a)$.

Using the principle of superposition of thermal fields, valid for linear heat-conduction problems [3], we can write

$$U_i = U(x_i) = \sum_{j=1}^{M} a_{ij} q_j, \quad i = 1, 2, \dots, M.$$
 (7)

Fig. 2. Distribution of relative error σ (%) for a synthesis of condition (2) along the boundary y = b + (c - b)x/a as a solution of the auxiliary problem with M subdivisions of the contour boundary.

We can obtain the coefficients a_{ij} appearing in Eq. (7) upon making appropriate analytical transformations of formula (6) or from the relation

$$a_{ij} = T(x_i, y_i = b + (c - b)x_i/a,$$

$$q_1 = q_2 = \ldots = q_{i-1} = q_{i+1} = \ldots = q_M = 0, \ q_i = 1$$

From the physical point of view the coefficient a_{ij} characterizes the value of the temperature at the i-th node of the collocation $(x_i, y_i = b + (c - b)x_i/a)$ per unit thermal flow $(q_j = 1)$ introduced at the j-th interval of the added-on contour.

The unknowns q_i are found by solving the linear system of algebraic equations (8) by the method of Gauss [5]. Substitution of q_i into the relation (6) yields an approximate analytical solution of the initial problem (1)-(5).

A numerical solution of our problem was carried out on the BÉSM-6 computer for the following values of the parameters: $\alpha = 10^{-2}$ m, $b = 0.8 \cdot 10^{-2}$ m, $c = 10^{-2}$ m, $d = 10^{-2}$ m, $\lambda = 10$ W/(m·deg), $x_1 = 0$, $x_2 = 2 \cdot 10^{-3}$ m, $x_3 = 4 \cdot 10^{-3}$ m, $x_4 = 6 \cdot 10^{-3}$ m, $x_5 = 8 \cdot 10^{-3}$ m, $x_6 = 10^{-2}$ m, M = 6, $U_1 = U_2 = U_3 = U_4 = U_5 = U_6 = 200^{\circ}$ C.

Since the solution obtained satisfies the Laplace equation (1) exactly in the computational region and satisfies the boundary conditions (3)-(5) on the boundaries (x = 0, $y \in (0, b)$, (x = a, $y \in (0, c)$, y = 0, $x \in (0, a)$), the maximum relative error in the computed temperature at an arbitrary point of the region does not exceed the relative error of the synthesis of condition (2) on the boundary y = b + (c - b)x/a, $x \in (0, a)$. Figure 2 shows the distribution of the relative error in the synthesis of the boundary condition (2) of the initial problem (1)-(5) by means of the flows q_1 , $i = 1, 2, \ldots, 6$. It is evident from the figure that the maximum relative error in the computed temperature field is at most 1.2%. Naturally, an increase in the number of collocation nodes increases the accuracy of the solution. Thus, when M = 10 the relative error does not exceed 0.4%; moreover, the time to calculate the temperature at 400 points amounts to around 20 sec. Calculation of this problem by a grid method using a KSI program on the BÉSM-6 computer requires a machine time two orders of magnitude greater to achieve the same degree of accuracy.

NOTATION

 λ , thermal conductivity coefficient; n, unit vector in the direction of the exterior normal to the boundary of the region; T, temperature distribution function; M, number of sub-divisions of the contour boundary.

LITERATURE CITED

- I. E. Zino, Problems of the Theory of Transport Processes [in Russian], Minsk (1977), pp. 35-43.
- L. V. Kantorovich and V. N. Krylov, Approximate Methods of Higher Analysis, Interscience, New York (1958).
- 3. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Moscow (1967).

(8)

- B. P. Demidovich, I. A. Maron, and E. Z. Shuvalova, Numerical Methods of Analysis [in 4. Russian], Moscow (1969).
- D. K. Faddeev and V. N. Faddeva, Computational Methods of Linear Algebra, W. H. Freeman 5. & Co., San Francisco (1963). V. P. Il'in, Numerical Methods of Solving Electrooptics Problems [in Russian], Novosi-
- 6. birsk (1974).